Sea anemones may thrive in a high CO2 world.
نویسندگان
چکیده
Increased seawater pCO2 , and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO2 gradient at Vulcano, Italy. Both gross photosynthesis (PG ) and respiration (R) increased with pCO2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO2 stimulation) of metabolism. The increase of PG outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO2 , which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO2 . Understanding how CO2 -enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.
منابع مشابه
Defending against pathogens – immunological priming and its molecular basis in a sea anemone, cnidarian
Cnidarians, in general, are long-lived organisms and hence may repeatedly encounter common pathogens during their lifespans. It remains unknown whether these early diverging animals possess some type of immunological reaction that strengthens the defense response upon repeated infections, such as that described in more evolutionary derived organisms. Here we show results that sea anemones that ...
متن کاملPhylogenetic Relationships among Deep-Sea and Chemosynthetic Sea Anemones: Actinoscyphiidae and Actinostolidae (Actiniaria: Mesomyaria)
Sea anemones (Cnidaria, Actiniaria) are present in all marine ecosystems, including chemosynthetic environments. The high level of endemicity of sea anemones in chemosynthetic environments and the taxonomic confusion in many of the groups to which these animals belong makes their systematic relationships obscure. We use five molecular markers to explore the phylogenetic relationships of the sup...
متن کاملAsexual Propagation of Sea Anemones That Host Anemonefishes: Implications for the Marine Ornamental Aquarium Trade and Restocking Programs
Anemonefishes and their host sea anemones form an iconic symbiotic association in reef environments, and are highly sought after in the marine aquarium trade. This study examines asexual propagation as a method for culturing a geographically widespread and commonly traded species of host sea anemone, Entacmaea quadricolor. Two experiments were done: the first to establish whether size or colour...
متن کاملThe anti-biofilm effects of sponge (Callyspongia sp.) and two sea anemones (Zoanthus sansibaricus and Cerianthus lloydii) collected from the Persian Gulf
Background: Sponges and sea anemones do not have specialized defense organs. Instead, they rival harmful microorganisms by producing certain compounds. These compounds can also be useful against some human pathogens. This study aimed to investigate the antimicrobial effects of bioactive products from these marine animals. Methods: Two species of sea anemone <e...
متن کاملProlonged exposure to elevated CO2 promotes growth of the algal symbiont Symbiodinium muscatinei in the intertidal sea anemone Anthopleura elegantissima
Some photosynthetic organisms benefit from elevated levels of carbon dioxide, but studies on the effects of elevated PCO(2) on the algal symbionts of animals are very few. This study investigated the impact of hypercapnia on a photosynthetic symbiosis between the anemone Anthopleura elegantissima and its zooxanthella Symbiodinium muscatinei. Anemones were maintained in the laboratory for 1 week...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Global change biology
دوره 18 10 شماره
صفحات -
تاریخ انتشار 2012